Guidelines for Implementing UCL GPS-IIR Non-Conservative Force Models

Radiation pressure and thermal re-radiation models

Santosh Bhattarai and Marek Ziebart
University College London

April 2018

1.0 Overall description

The model implementation is separated into the bus and solar panels.

The bus model uses three grid files that can be used to compute the spacecraft acceleration (in) along the body-fixed system (BFS) X, Y and Z-axes. The user needs to supply the latitude and longitude of the Sun in the BFS basis and the spacecraft-Sun distance. The required ASCII grid files are supplied, as well as file format descriptions. C++ code for reading the files and computing the accelerations and an executable program for testing purposes are also provided.

1
UCL Space Geodesy and Navigation Laboratory GPS-IIR force model guidelines
2.0 Bus model

………………………………………………………………………………………………
Inputs:
· latitude and longitude of the Sun (decimal degrees)

Computation: bilinear interpolation

Outputs:
· Acceleration due to solar radiation pressure and thermal re-radiation along the BFS X, Y and Z-axes, at one astronomical unit with an assumed spacecraft mass of 1100 kg, in units of .
………………………………………………………………………………………………

The model has been computed at the nominal solar irradiance (at one astronomical unit) of 1368Wm-2.

NOTE: In implementation, the bus model acceleration will be scaled for the true spacecraft mass, the true spacecraft-Sun distance, and the true solar irradiance.

The model has been computed at a nominal spacecraft mass of 1100 kg

Grid file format: note that the grid spacing is every 1°

[image:]

The grid files supplied are:

For the GPS IIR and IIR-M satellites with NAP antenna:
gpsiirnapX-R100-Q37W13S0.grd
gpsiirnapY-R100-Q50W50S0.grd
gpsiirnapZ-R100-Q32W11S0.grd

For the GPS IIR and IIR-M satellites without NAP antenna:
gpsiirX-R100-Q34W13S0.grd
gpsiirY-R100-Q50W50S0.grd
gpsiirZ-R100-Q32W11S0.grd

In addition there is:

· tp1_gridfile_imp – binary executable to use in obtaining check values for the grid interpolation
· tp1_gridfileimp.cpp – the C++ source code for tp1_gridfile_imp.

Note that this source code file features heavily commented versions of the file readers needed to port the data in the grid files into data arrays, as well as the routine to carry out the interpolation.

In case the binary executable (tp1_gridfile_imp) does not work on your computer, here are a few check values (accelerations are in). These values apply for the set of grids file for Block IIR and IIR-M satellites without NAP antenna.

	Lon °
	Lat °
	X acceleration
	Y acceleration
	Z acceleration

	0.0
	90.0
	3.525028851938587e-11
	1.990949449776261e-12
	-2.311258262445826e-08

	180.0
	50.0
	1.950992800644234e-08
	1.52929840951648e-10
	-2.190731832042266e-08

	-2.538516462
	-9.990384523
	-2.347754808239434e-08
	1.246723877551787e-09
	3.892739998941906e-09

Please note – the method has been designed specifically so that the grid data can be held in an array in RAM during processing. The relationship between the array elements (e.g. entry in row 4, column 8) and their associated longitude and latitude is given below:

[image:]

In the interpolation problem you start with a specific longitude and latitude of the sun in the BFS frame, and need to pull out the relevant data points from the array. As an example let’s say we require the BFS X-axis acceleration for the sun longitude = -176.4° and latitude +88.6°. The four grid points required for the interpolation are:

[image:]

The longitude and latitude of the interpolation point dictate which points on the 1° spaced grid are required for the bilinear interpolation. Once you know these latitudes and longitudes you need to work out the array entry numbers. We have structured the array to resemble a map, and the array entries can be calculated as follows:

Let be the required row and column identifiers. Then:

This assumes that latitude varies between -90 to +90 degrees, and longitude runs between -180 to +180 degrees.

There are other ways of sorting the data and finding the required points for the interpolation, the only important constant is to use bilinear interpolation.

[bookmark: _GoBack]2.1 The grid file implementation test program

The GPS IIR SRP/TRR bus model, in the form of grid files, are provided in ~/tp1_bus_srp_trr, along with the source code and a Makefile for building a test program for the SRP/TRR grid file implementation. The main purpose of this test program is to check that the bilinear interpolation method is producing the correct values at the grid corners, at the grid poles (i.e. lat = +/- 90°) as well as at several arbitrarily chosen locations.

On a Unix/Linux system, the test program can be built by running either of the following commands from the ~/tp1_bus_srp_trr directory:

make

or

g++ srpgrid.cpp tp1_gridfile_imp.cpp –o tp1_gridfile_imp

The outputs of the test program are sent to the ucl_gridfile_imp_test1.txt in the directory in which the program is run – the test values for latitude and longitude are also shown in this output file. A reference file is provided with the ‘correct’ interpolated values for the purposes of comparison. This file is called ‘ucl_test1.txt’ and it can be found in the same directory as the grid files (tp1_bus_srp_trr).

Santosh Bhattarai
Marek Ziebart
April 2018

image2.png
[1][1] [1][361]

A=-180°¢ = —90° A= +180° ¢ = —90° T

[181.][1] [181].[361]

A=-180°¢ = +90° A= +180° ¢ = +90°

<«+—— 361 columns, each with constant longitude —

3pNJNe| JUBISUOD YIIM Yoed

‘SMol T8T

-—

image3.png
/ Row and column in the grid file
[179](4] [179](5]
=-177°¢ = +88°" =-176° ¢ = +88°

Interpolation point
A=-176.4° ¢ = +88.6°
L]
[180][4] [180][5]
A=-=177°¢ = +89° A=-176° ¢ = +89°

$

Longitude and latitude of the grid point

image1.png
Format identifier

No. of columns, no. of rows

Longitude limits of grid nodes

361 m‘// Latitude limits of grid nodes Maximum and minimum values in data
180 1
-90 90 ‘/,//”/’//

-2.3354732862291E-008 2.6069732883852E-008
-1.950967637391389e-009 ~1.947767699470018-009 ~1.94567370135251e-009 ~1.944763203822955e-009 ~1.9449020127948182-009
-1.910049843507802¢-009 -1.8887970365472892-009 ~1.8709374190492e-009 ~1.859343789336151e-009 ~1.853712388128007e-009
-1.898772381261191e-009 ~1.919210249416312-009 ~1.941114279178839e-009 ~1.961834567251596e-009 ~1.980310675935708e-009
-2.068260572142064€-009 ~2.079771193161176e~009 ~2.090763414778898e-009 ~2.104781788098246€-009 ~2.12464791925064e~009
-2.032001401250236e-009 -2.009905687922675e-009 ~1.988725270446213e-009 -1.968492858407452e-009 ~1.949360879801425-009
-1.870166512820405e-009 ~1.8649619423788792-009 ~1.8628190893438560-009 ~1.861736891127372-009 -1.858892922850308-009
-1.8272452518404e-009 -1.825018407935704e-009 -1.824613590718463e-009 —1.826063019504926e-009 —1,828784348055666e-009
-1.879331805710429e-009 ~1.893708084820353-009 ~1.902351542997346-009 —1.905695515696489e-009 —1.9058617949652e-009

The first value corresponds to (-180, -90), the second value is for (-179, -90), and so on.

